134 research outputs found

    A discussion on the origin of quantum probabilities

    Get PDF
    We study the origin of quantum probabilities as arising from non-boolean propositional-operational structures. We apply the method developed by Cox to non distributive lattices and develop an alternative formulation of non-Kolmogorvian probability measures for quantum mechanics. By generalizing the method presented in previous works, we outline a general framework for the deduction of probabilities in general propositional structures represented by lattices (including the non-distributive case).Comment: Improved versio

    Pattern Recognition In Non-Kolmogorovian Structures

    Full text link
    We present a generalization of the problem of pattern recognition to arbitrary probabilistic models. This version deals with the problem of recognizing an individual pattern among a family of different species or classes of objects which obey probabilistic laws which do not comply with Kolmogorov's axioms. We show that such a scenario accommodates many important examples, and in particular, we provide a rigorous definition of the classical and the quantum pattern recognition problems, respectively. Our framework allows for the introduction of non-trivial correlations (as entanglement or discord) between the different species involved, opening the door to a new way of harnessing these physical resources for solving pattern recognition problems. Finally, we present some examples and discuss the computational complexity of the quantum pattern recognition problem, showing that the most important quantum computation algorithms can be described as non-Kolmogorovian pattern recognition problems

    A discussion on particle number and quantum indistinguishability

    Get PDF
    The concept of individuality in quantum mechanics shows radical differences from the concept of individuality in classical physics, as E. Schroedinger pointed out in the early steps of the theory. Regarding this fact, some authors suggested that quantum mechanics does not possess its own language, and therefore, quantum indistinguishability is not incorporated in the theory from the beginning. Nevertheless, it is possible to represent the idea of quantum indistinguishability with a first order language using quasiset theory (Q). In this work, we show that Q cannot capture one of the most important features of quantum non individuality, which is the fact that there are quantum systems for which particle number is not well defined. An axiomatic variant of Q, in which quasicardinal is not a primitive concept (for a kind of quasisets called finite quasisets), is also given. This result encourages the searching of theories in which the quasicardinal, being a secondary concept, stands undefined for some quasisets, besides showing explicitly that in a set theory about collections of truly indistinguishable entities, the quasicardinal needs not necessarily be a primitive concept.Comment: 46 pages, no figures. Accepted by Foundations of Physic

    Quantal effects and MaxEnt

    Get PDF
    Convex operational models (COMs) are considered as great extrapolations to larger settings of any statistical theory. In this article we generalize the maximum entropy principle (MaxEnt) of Jaynes' to any COM. After expressing Max-Ent in a geometrical and latttice theoretical setting, we are able to cast it for any COM. This scope-amplification opens the door to a new systematization of the principle and sheds light into its geometrical structure
    • …
    corecore